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A Proof of the Odd-Symmetry of o

the Phases for Minimum Weight Perturbation, S

Phase-Only Null Synthesis -l

: Ry

-4

1. INTRODUCTION 3
The current interest in phase-only control of the element weights of linear .

10-16 ;5 a result of the increas-

arrays for adaptive nullingl-9 and null synthesis

ing importance of phased arrays and adaptive processing. Null synthesis has

considerable value for adaptive nulling in that it can help determine limitc to what

can be achieved adaptively. -
In null synthesis, as in adaptive nulling, it is generally undesirable to impose

nulls in a given array antenna pattern at the expense of large distortion in regions

of the pattern aside from the imposed null locations. One way to reduce such

pattern distortion is to minimize the perturbations of the element weights, The
imposing of nulls in the pattern of a linear array by phase-only weight control
subject to minimization of the weight perturbations is, unlike for combined phase'
and amplitude control, a nonlinear problem and, in general, cannot be solved

analytically., Numerical !ochnquosl4' 17

Loa' Lol

must be used to calculate the phases re-

’
et

quired for minimized weight perturbation, phase-only null synthesis.

If the pattern in which nulls are to be imposed is real, it is reasonable to as-

.

.
AP

sume that the pattern satisfying the null constraints and corresponding to minimum
element weight perturbations should likewise be real. The phase perturbations of

(Recrived for publication 11 April 1983)

Becaus« of the large number of references cited above, they will not be listed here,
See References, page 19,
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the element weights are then odd-symmetric with respect to a phase reference lo-
cated at the center of the array. If nonlinear programming or other numerical
techniques are used to calculate the phases for null synthesis, the odd-symmetry
property of the phases can be used to reduce the number of unknown phases by a
factor of a half, thereby significantly increasing computational efficiency.
Although intuitively reasonable, nevertheless a proof of the odd-symmetry prop-

18 the author proved the odd-symmetry

erty is desirable. In an earlier report,
property for the case of a single imposed null. The method of proof, however,
unfortunately did not generalize to multiple imposed nulls. It is the purpose of

this report to give a general proof of the odd-symmetry property.

2. PROOF OF THE ODD-SYMMETRY OF THE PHASES FOR MINIMUM WEIGHT
PERTURBATION, PHASE-ONLY NULL SYNTHESIS

We consider a linear array of N equispaced isotropic elements whose field

pattern is given by

N jdnu
po(u) = E a, e . (1)
n=1

In Eq. (1) the {a } are the complex element weights,

dn =(N-1)/2-(n-1)-= 'dN-nH , n=12 ..., N (2)
and

u-2z/xdsineg
where

A = wavelength,
d = interelement spacing, an:l

A - angle measured from broadside ro the array,

The phase reference is taken to be the center of the array.  The pattern is
[¢]
assumed real so that the complex ¢lement weights satisfy the rnlationl'

18. Shore, R.A. (1983) On the Odd-Symmetry of Minimum Phas-Onlyv
Perturbations, RADC-TR-83-26,

————

19. Oppenheim, A, V., and Schafer, R.W, (1975) Digital Signal Processing,
Prentice-Hall, N.J., pp. 24-26,
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Let én, n=1, 2, ..., N be the set of phase perturbations that (a) imposes nulls :
in the pattern at the locations u = u, k=1, 2, ..., K¢ <
i
L)
n . . [ ]
¢, idu T
2 aje Me "Ko0 , k-1,2 ..., K (4)
n=1
and (b) minimizes the weighted sum of the squares of the absolute values of the _7__‘:4
element weight perturbations o
N . 2
i, 29
F:E Ca(e -1) . (5) -
n n Bk
n=1 .
4
=
The weighting coefficients, {cn}, in Eq. (5) are assumed real, positive, and _—
symmetric: J
Cnept1 © p » ML 2 N (6) B
194
We wish to show that the phase perturbations are odd-symmetric: _
Snpey T 6y o ML 20000 N (7

50 that the perturbed pattern,

N

6 id v
nlu) - E a_ e D
N n

n=1

is real,

"The choice of e = 1 forall n makes F the sum of the squares of the absolute
values of the weight perturbations,  For half wavelingth spacing of the array ele-
ments, this is cquivalent 1o minimizine the maonn sauare pattern perturbation farv
A from =x/2to +7./2, Other choices ol the (p tith practienl application to null
<yvnthesis are also ;)r_\ssil)lt-;H far examiple, Cy 1 2 "~|{2'
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The proof of Eq. (7) uses tke method of Lagrangian multipliers.zo We first

:a rewrite the null constraints of Eq. (4) in the form @ 4
o ZN: () % k<12 ... K ) B
:’ a, \e -1} e = -po(uk) . =1, 2, ..., ( -‘
“ n=1 .

2
®
-

- and then make the constraints purely real by multiplying the left-hand side of ]
';-:'.‘_ Eq. (8) by its complex conjugate and squaring the (real) right-hand side, thus ~ j
;. obtaining . 4
‘ e
L N N < . < U A
o jé ) ( -j¢ ) j(d_-d )uk 2 (9) L
b n=1 m-=1 h
; k=1, 2, ..., K . Ny
. Since
N . .
_ 2 ( Jd’n ) ( 'J¢n
F = E cnlanl e -1 e - 1)
n=1
N

- 25 o
= Z cnlanl (2 - 2 cos ¢) o
n=1 -
. 4
3
; -
N N ]
=ZZ c |a |2-ZZ ¢ |a |2cos¢ (10) o
n'“n n'%n n ' ,:
n=1 n=1 R '
R

minimizing F is equivalent to niaximizing

N A

- 2

F! o= z cnlanl cos ¢, . (11) sl
n=1 oo

20. Fletcher, R. (1981) Practical Methods of Optimization; Vol. 2, Constrained
Optimization, John Wiley & Sons, New York, Ch. 9.
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We now form the Lagrangian
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where the constraint functions, C,, from Eq. (9) are given by

£
o,
aa A"

N N . . . ‘
i -jo i(d_-d_Ju

* n m n m k 2 12)
Ck = E Z aja (e - 1) (e - e - po(uk) . o
n=1 m=1 L
k=1, 2 ..., K :. 1
!
and the {xk} are the (real) Lagrangian multipliers. For the {dsn} to locally max- o
imize (or minimize) F' subject to satisfying the constraints Ck = 0 it is necessary : J
that the gradient of L. with respect to the {¢n} be zero. Accordingly we differen- -
tiate L with respect to an arbitrary one of the {cbn}, say ¢p' and equate the deriva- "’.’i
tive to zero: ‘ .}
K i
- - (13) 0
aqsp k a¢ : o
o F -»
. Al
From Eq. (11) ;‘:":
9F' 2 . ] o
a¢p = cplapl sin ép . (14) S
=

PR

To differentiate Ck with respect to o&p we group the terms of the double summation

in Eq. (12) containing ¢p according as to whether (1) n=p, m # p; (2) n # p,

m = p, or (3) n=m = p. For the first group of terms el

. . N .
) J‘bp Jdpuk * " “idp v
26 ap(e -l)p am (o -1)9
p m=1
m#p
ié, didou Al « -ié ., -id, uy -ié -id u o
- m-1
’ -®-
L! 11 .
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J(¢p+dpuk) o

i¢
:-jpo(uk)ape -j]aplz(l-o p) s (15a)

vhere we have used Eq. (8) and the fact.that po(u) is real. The contribution of the

aC S
sccond group of terms to 5-‘1’—15 is simply the complex conjugate of that of the first :.- -~
group .

(6_+d_u,) 6 T
-3(¢,+d u -; -
. * p pk . 2 _ p 5
i po(uk) aj e + :||ap‘ (1 e ) , (15b) R
-
g 9
while the contribution of the one term in group (3) is ) 2

i 12 j"f’p -jép i 2 0 -
"_p[lﬂpl ((“ -1)‘9 -1) = |8p| 5¢—p(2—2COS¢p) _ 1
@2

E

2| a 12 sin ¢ (15c)

a, p - 1

Summing the three contributions [Egs. (15a) through 15(c)) we obtain

A, . i(é_+d u,) o]
K. o R i } ; =

—= = 2p () Im ¢ e (16) -~

:'901D p0 k LaP ) Y
Substituting Eq. (14) and Eq. (16) in Eq. (13) then yields ;.;
o |2 sin ¢ = 1 ¥ ) } S

cplap sin Op = 2 E )\kpo(uk) Im ap e ; . (17) .

k-1

Now write the complex amplitude ap in the magnitude-and-phase form

e

Jo L
;:p I:xp! o p . {18) ' -9
.'v -"J
. @
=
4
B R
- N
_.'- e
2 —
.
-4 12 -0
P- .
- 1
@4
:
1




Fguation (3) inmyplies that
I:‘\'-[Hll ’”p'
YN-prl o
Substituting Fq. (18) in kq. (17),
K

(.pl :nplsin (bp 2 E ,\kpo(uk) sin (d;p + dpuk + np)
k1

[ K
2 E Akpo(uk) cos ((lpuk + ap) sin (t’p

k1
K
i 2 E Akpo(uk) sin (dpuk + ap) cos ¢p
k-1

tfrom which, reavranging, we obtain

K
2 Z M po(uk) sin (dpuk + ap)
k 1

tan ép N

(‘P] “pl -2 E N po(uk) cos (dpuk + ap)
k-1

But then, letting p N - p o+ 1,

tn o\_'” 1 -tan 0')

(192)

(19b)

(20)

sincee, in view of Fas, (2), (6), and (19), the numerator of kq, (20) is changed in

sign only, while the denominator remains unchanged.

Frquation (21) implies that either

o\'-p+1 “n

13
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or

¢N-p+1 = -¢p +r . (23)
Equation {22) is the odd-symmetry property we are attempting to demonstrate.

To complete the proof we show that if there is a solution to the constrained opti-
mization problem containing one or more pairs of phases that satisfy Eq. (23), then
by subtracting /2 from these phases we obtain a new solution that satisfies

Eq. (22) and gives the same value of the maximized function F' of Eq. (11). It
then follows that the phase perturbations for minimized weight perturbation null
synthesis can always be assumed to satisfy Eq. (22) without the risk of discarding
a solution with a larger value of F!',

Suppose that there is a solution to the constrained optimization problem con-
taining one or more pairs of phase perturbations that satisfy Eq. (23)., (We do not
claim that one actually exists.) We first note that the contribution to the total
array pattern of those pairs of elements whose phase perturbations satisfy Eq. (23)
is purely imaginary, while the contribution of the element pairs whose phase per-
turbations obey Eq. (22) is purely real. The two patterns, imaginary and real,
are completely uncoupled since they derive from distinct element sets, and hence
both patterns must have nulls at the imposed null locations {uk} for the constraints,
Eq. (9), to be satisfied. It follows that if the weights of all the elements whose
phase perturbations satisfy Eq. (23) are multiplied by the same constant, the
resulting total pattern will still have nulls at all the imposed null locations. We
now form a new set of phase perturbations by subtr:;lgting 7/2 — equivalently
~jr

multiplying the respective element weights by e = -j —from all the phases

satisfying Eq. (23). Denoting the new phase perturbations by db;),

o) = 0, -

[STE

and

¢{\,_p+1=¢N_p+1-5’-=(-¢p+1r)-2l=-(¢p-g) =<4, . peP' , (24

where P! denotes the set of indices of all the phases satisfying Eq. (23). Thus the
altered phase perturbations, {¢;)}, obey Eq. (22). The new total pattern is now
purely real and, from the remark made just above about multiplying the element
weights by a constant, has nulls at all the imposed null locations {uk} so that the

null constraints, Eq., (9), continue to be satisfied. It remains to consider the
value of F', The contribution of the phases satisfying Eq. (23) to the value of F!
is zero since, using Eqs. (6) and (19a),

1
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2 , 2
Cpl‘"‘pl cos d’p“‘N-puI“x-pnl COS Oy _pe1
¢ |a ‘2 [cos ¢ +cos(-¢_+M] 0O . (25)
p!p p p

The contribution of the altered phase pairs to the value of ' is, using bas. (6),
(19a), and (29)

B |

2 . .
pezp' (cplapl C°°¢b+ox-p+1la\l-p+l 2(.05.@\‘_[)”)

1 ; 2 i
"y Z 2<‘p|np|(>os(¢p-21): E oplap' smd)p ; (26)

pe P! pe P!

the factor of 1/2 is included because the phase pairs are counted twice, once for
ecpch member of the pair, Now if Fq. (17), the equation obtained by setting the
derivative of the Lagrangian equal to zero, is summed with respect to p from 1 to

N we obtain

A | '2 _ K N j(¢p+dpuk)
Z (‘p‘np sin ép = 2 Z )kpo(uk) Im E ap o
k=1

p=1 p=1

from which it follows by substituting Fq. (4) that

Sines the eontribution to the sum on the b ft-hand side of Fqg. (27) of all phase pairs
satidving fg, (22) {5 zoro, it follows that the contribution of the remnaining pairs
co the surm o must slse be voo, Bt this sum is precisely the sum on the right ~hand
b (29, Henee ) Ssubtraeving =72 from o1l phases =sotisfving Faq. (23) does
not wlter the faet that theiv contribution ta the value af F'is 7o0a, W hive thus
Shoong s claimied above s cher 0¥ there 15 solution ta the con<tenine L optionizn -

tion veobless with phrse s <orisrving g, (23), then o ne solution eon he obiaine ]
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by subtracting /2 from all these phases that gives the same value of F' and that
satisfies Eq. (22). Therefore, if we assume that the phase perturbations for
minimized weight perturbation null synthesis are odd-symmetric, there is no
possibility of inadvertently discarding a solution without odd-symmetry that gives

a smaller sum of weighted squared absolute weight perturbations,

3. CONCLUDING REMARKS

In this section we comment on some aspects and implications of the proofl
given in Section 2.

(1) It is worth noting that it is not possible to reverse the procedure we have used
in the last part of the proof to show that any solution with phases satisfying Eq. (23)
can be replaced by a purely odd-symmetric solution with the same value of F', If
7/2 is added to all phases satisfying Eq. (22), we do indeed obtain a solution that
satisfies Eq. (23) and the null constraints. However, letting P denote the set of
indices of all phases that satisfy Eq. (22), the contribution of these phases to the
value of F! is

2
Z cplapl cos¢p )

peP

while the contribution of the altered phases to F' is zero by Eq. (25), and there is
now no way of arguing that the contribution to F' remains unchanged or increases
as a result of having altered the phases,

{2)In the proof we have not attempted to eliminate the possibility of there actually
being a solution to the minimized weight perturbation, null synthesis problem with-
out odd-symmetry of the phase perturbations. What we have shown is that one
cannot possibly minimize the weight perturbations more without odd-symmetry
than with it and hence, since odd-symmetry and a real perturbed pattern is a
simpler and more desirable situation than non-odd-symmetry and a complex
pattern, one should feel free to assume odd-symmetry from the outset in numerical
calculations. The proof in fact suggests that a stronger result is true: namely,
that one can always do better with a purely odd-symmetric solution than with a
solution containing some phase perturbations that satisfy Eq. (23), and hence that
Eq. (23) can be dismissed as an "extraneous” solution of Eq. (21), or quite pos-
sibly a solution that maximizes rather than minimizes the weight perturbations.

As we have noted in the proof, if there were a solution to the minimized
weight perturbation nulling problem with some, but not all, phase pairs

16
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odd-symmetric, then the array would be decomposable into two subarrays, each
consisting of a set of pairs of svmmetrically-placed elements. One subarray
would have a purely real and the other a purely imaginary pattern, and each pat-
tern would have nulls at all the imposed null locations, Hence, the original
problem of imposing nulls in a pattern with minimized weight perturbations would
be replaced by two separate nulling problems. An immediate consequence of this
is that the upper limit on the possible number of imposed nulls would be reduced

from the usual N/2 with phase-only nulling to N /2, with Nmin the number of

elements in the smaller of the two subarrays. t‘:;c;ndecomposition into two sub-
arravs could allow more than N/4 imposed nulls, Furthermore, since the same
nulls would be imposed in the two independent subarray patterns, it is to be
expected that the resultant perturbations of the overall pattern and array weights
would have to be larger than they would be if the most efficient use were made of
all array elements as one group to impose pattern nulls, It is also important to
note that in a very real sense, minimization of the weight perturbations with
phases satisfving Eq. (23) is impossible. The contribution of each pair of elements
with phases satisfying Eq. (23) to the sum of squared weight perturbations given

by Eq. (10) is, using Eq. (25) and the symmetry of the {cn} and the {an},

2 2
2(eplapgl® ey prilay pul®)

2 2 . 2
-2(cp]ap| cos¢p+cN_p+1|aN_p+1| C°S¢N-p+1) -4cp|ap| .

This contribution is not only a fixed quantity that cannot be decreased by varying
dsp, but also represents a large perturbationofthe pairof arrayv weights being exactly
one half of the maximum possible perturbation., For these reasons, although not
proved rigorously, it is plausible that the odd-symmetric solution, Eq. (22), to

kq. (21) is not only at least as good as any solution containing phases that satisfy
Eq. (23), but is in fact the only valid form of the phase perturbations for minimized
weight perturbation, null synthesis,

17
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RADC plans and executes research, development, test and
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collection and handling, information system Lechnology,
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compatibility.
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